artificial intelligence
Home » computers » computer science » artificial intelligence » the elements of statistical learning
|
Aftersleep Books
|
||||||||||||||||||||
The Elements of Statistical LearningThe following report compares books using the SERCount Rating (base on the result count from the search engine). |
|||||||||||||||||||||
|
Aftersleep Books - 2005-06-20 07:00:00 | © Copyright 2004 - www.aftersleep.com () | sitemap | top |
The book provides a very illuminating counterpoint to other books that promote the Computational Learning Theory (COLT / kernels / large margins) viewpoint of modern machine learning. Many of the same techniques such as boosting and support vector machines are discussed, but are motivated in different ways. Appropriate regularization is seen as the key to avoiding overfitting with complex models, rather than margin maximization. Mathematically you often end up solving the same problem, but personally I usually find the statistical approach much more direct and intuitive.
This book is a nice follow on to introductory pattern recognition texts such as Duda and Hart, though it can be read without any prior pattern recognition knowledge. It provides a nice mix of theory and paractical algorithms, illustrated with numerous examples. An essential element of your machine learning library!